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Abstract

Interplanetary coronal mass ejections (ICMEs) are one of the main drivers
for space weather disturbances. In the past, different machine learning
approaches have been used to automatically detect events in existing
time series resulting from solar wind in situ data. However, classification,
early detection and ultimately forecasting still remain challenges when
facing the large amount of data from different instruments. We attempt
to further enhance existing convolutional neural network (CNN) models
through extending their possibilities to process data from multiple
spacecraft. Additionally, we make an effort to extend the previously
binary classification problem to a multiclass classification, to also include
corotating interaction regions (CIRs) into the range of detectable
phenomena. Ultimately, we aspire to explore the suitability of several
other methods used in time series forecasting, in order to pave the way
for the elaboration of an early warning system.
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Introduction

Interplanetary coronal mass ejections (ICMEs) are one of the main drivers for space weather disturbances. In the
past, different approaches have been used to automatically detect events in existing time series resulting from solar
wind in situ data. However, accurate and fast detection still remains a challenge when facing the large amount of
data from different instruments.

Example of an ICME captured by WIND
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Introduction

Even though there are several criteria used for the identification of ICMEs, a simple threshold based method is not
sufficient to reliably detect them in time series. Not all characteristics occur steadily and even experts disagree
from time to time. Still, the huge amount of data calls for an automatic detection. Nguyen et al. (2019) proposed
a machine learning approach using convolutional neural networks. Even though the results were quite reasonable
and proved the general suitability of a machine learning algorithm to tackle the problem, it still left room for
improvements.

We propose a pipeline using a UNet (Ronneberger et al. (2015)) including residual blocks, squeeze and excitation
blocks, Atrous Spatial Pyramidal Pooling (ASPP) and attention blocks, similar to the ResUNet++ (Jha et al.
(2019)), for the automatic detection of ICMEs. Comparing it to an existing method, we find that while achieving
similar results, our model outperforms the baseline regarding GPU usage, training time and robustness to missing
features, thus making it more usable for other datasets.

The method has been tested on in situ data from WIND. Additionally, it produced reasonable results on STEREO
A and STEREO B datasets with less input parameters. The relatively fast training allows straightforward tuning of
hyperparameters and could therefore easily be used to detect other structures and phenomena in solar wind data,
such as corotating interaction regions.
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Data and Catalogs

The 30 primary input variables

I bulk velocity and components (V , Vx , Vy , Vz )

I thermal velocity (Vth)

I magnetic field, components and root mean square (B, Bx , By , Bz , σBx , σBy , σBz )

I density of protons and α particles, obtained from moment and nonlinear analysis (Np , Np,nl , Na,nl )

I 15 canals of proton flux

were provided by the Magnetic Field Investigation (MFI), Solar Wind Experiment(SWE) and 3D Plasma and
Energetic Particles Experiment (3DP) on board of the spacecraft WIND between 1997 October 1 and 2016 January
1. Three additional features were computed:

I plasma parameter β (ratio between thermal and magnetic pressure)

I dynamic pressure (Pdyn)

I normalized magnetic fluctuations (σB )
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Data and Catalogs

Additionally, we tested the pipeline on STEREO-A and STEREO-B data, which include less input parameters than
the one used by Nguyen et al. (2019). These two datasets were complemented with a WIND dataset, reduced to
the same input parameters:

I bulk velocity (V )

I magnetic field and components (B, Bx , By , Bz )

I density of protons (Np)

I proton temperature (Tp)

Three additional parameters were computed for these datasets as well:

I plasma parameter β

I dynamic pressure (Pdyn)

I ratio between temperature and proton temperature (Tp/Tex )

We used the ICME catalog by Nguyen et al. 2019, which consists of several other ICME lists Jian et al., 2006,
Lepping et al., 2006, Richardson and Cane, 2010, Chi et al., 2016, Nieves-Chinchilla et al., 2018 plus the ICMEs
that were detected by the pipeline and thereupon added to the catalog. For the STEREO-A and STEREO-B
datasets, as well as the reduced WIND dataset, we used the ICMECAT, an ICME catalog that was originally
created during the HELCATS project Möstl et al., 2017 and updated in Möstl et al., 2020 to ICMECATv2.0.
Guided by the criteria in Nieves-Chinchilla et al. 2018 it only contains events that show clear signatures of magnetic
structure, called magnetic obstacles.
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ResUNet++

Our pipeline uses a sliding window approach to
capture time frames and computes the additional
features during preprocessing. Furthermore, we
resample the data to a 10 minute resolution in order
to get rid of holes in the datasets. The data is then
scaled to have a mean value of 0 and a standard
deviation of 1.

We compare each point in time to the eventlist and
label it 1 if an ICME is occuring at the time, and 0
otherwise. Thereby we create a onedimensional
segmentation map. For the network architecture we
adapt the ResUNet++ Jha et al., 2019 to create an
automatic event detection based on time series
segmentation. During postprocessing, an eventlist is
created out of the onedimensional segmentation map
and compared to the ground truth for evaluation.

Block diagram of the proposed model.
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Results

Comparing the predicted label to the ground truth we find a mean PRAUC of 0.705 for the WIND dataset using all
33 input variables.

Comparison of predicted and true label between January 2001 and April 2001.
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Outlook

Our proposed pipeline can be used for any time series
segmentation problem. The straightforward implementation allows
a simple extension to a multiclass classification problem and paves
the way to include corotating interaction regions into the range of
detectable phenomena within our pipeline. Furthermore, we hope
to apply our model to similar problems in the future.
The results of our work will soon be submitted for publication. A
tutorial on how to use our pipeline is available on github
(https : //github.com/epn −ml/TutorialIWF − ICMEs).
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