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Interplanetary Coronal Mass Ejections

Interplanetary coronal mass ejections (ICMEs) are one of the main drivers for
space weather disturbances. In the past, different approaches have been used to
automatically detect events in existing time series resulting from solar wind in situ
data. However, accurate and fast detection still remains a challenge when facing
the large amount of data from different instruments.

Fig. 1: Solar wind in situ data from the Wind spacecraft located at the Lagrangian Point L1, showing an ICME. The

solid vertical lines delimitate the event, including shock, sheath and magnetic cloud. From top to bottom: magnetic

field amplitude and components, solar wind velocity, proton density, proton temperature.

Figure 1 depicts an example event exhibiting the typical signatures of an ICME
featuring a magnetic cloud (MC), notwithstanding the existence of events without
the presence of aforementioned structure. The top panel shows a smooth rotation
of the magnetic field components and an enhanced total magnetic field compared
to the surrounding ambient solar wind. The second panel shows a first enhanced,
but then monotonically declining velocity profile compared to the preceding solar
wind. Both the velocity and the magnetic field exhibit a sudden sharp jump, the
so called shock, which is followed by the sheath, a turbulent region preceding the
magnetic could. The third panel depicts an extreme proton density decrease after
the proton density increase during the shock and sheath, and the fourth panel
shows a reduced proton temperature [4, 1, 8].

Automatic Detection

The circumstance that not all ICMEs even exhibit standard features and there ex-
ists no feature present in all ICMEs, hinders a standardized identification method
and fuels the need for time consuming visual expert labeling. Nevertheless, this
visual inspection is highly biased, emphasised through the existence of several
catalogs only partially overlapping with each other [11, 7, 9, 12, 10]. Further-
more, ranging from a few hours to multiple days, the duration of the events shows
a high variability.

ResUNet++

[11] explained the need for a machine learning solution and proposed a pipeline based on
the prediction of a similarity parameter of sliding windows of 100 different sizes. We restated
the problem as a time series segmentation task and proposed a variation of a ResUNet++,
which is an improved ResUNet architecture for colonoscopic image segmentation and sig-
nificantly outperforms other state of the art algorithms used for semantic segmentation. The
typical ResUNet architecture is extended through the application of squeeze-and-excitation
units [6], atrous spatial pyramidal pooling [5, 3, 2] and attention units [13], thus enhancing
the focus on relevant features and areas, increasing generalization, reducing computational
cost and capturing channel-wise dependencies. A block diagram of the used model archi-
tecture is shown in Figure 2.

Fig. 2: Block diagram of the model architecture.

We find that while achieving similar results, our model outperforms the baseline regarding
training time, thus making it more usable for other datasets.

Result & Outlook

The method has been tested on in situ data from Wind between 1997 and
2015 with a Dice Coefficient of 0.71. Additionally, it produced reasonable re-
sults on datasets with less input parameters and smaller training sets from
Wind, STEREO-A and STEREO-B with Dice Coefficients of 0.56, 0.58 and 0.63.
The relatively fast training allows straightforward tuning of hyperparameters and
could therefore easily be used to detect other structures and phenomena in solar
wind data, such as corotating interaction regions.
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